
Diversity of Rule-based Approaches … 

 

104 
 

AVANT, Vol. VI, No. 2/2016 
ISSN: 2082-6710 avant.edu.pl/en 

DOI: 10.26913/70202016.0112.0006 
 
 

 
 

Diversity of Rule-based Approaches: Classic 
Systems and Recent Applications 

Grzegorz J. Nalepa 
Jagiellonian University 
AGH University of Science and Technology 
grzegorz.j.nalepa @ uj.edu.pl 

Abstract 

Rules are a common symbolic model of knowledge. Rule-based systems share 
roots in cognitive science and artificial intelligence. In the former, they are 
mostly used in cognitive architectures; in the latter, they are developed in 
several domains including knowledge engineering and machine learning. This 
paper aims to give an overview of these issues with the focus on the current 
research perspective of artificial intelligence. Moreover, in this setting we 
discuss our results in the design of rule-based systems and their applications 
in context-aware and business intelligence systems.  

Keywords: rules; knowledge engineering; learning; context-aware systems; 
cognitive-architectures 

 

Representing Knowledge with Rules 

Rules are considered one of the most natural ways to represent human 
knowledge. They can be treated as a general form of conditional statement; 
however, in specific cases they can also be used to express factual knowledge. 
More importantly, rule interpretation and processing can model several types 
of human reasoning. These include deductive reasoning related to forward 
chaining (where conclusions are made upon facts), abductive reasoning 
corresponding to backwards chaining (where premises satisfying a given goal 
are identified), as well as inductive reasoning modeled by rule induction 
(where rules are discovered based on facts). In a way, the original works on 
rule-based representations can be thought of as belonging to the core research 
shared by both cognitive science and artificial intelligence (AI) when 
they began. 
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In this paper, we briefly discuss these common roots that are related to 
cognitive architectures in cognitive science and production rule systems in 
artificial intelligence. While the former grew as increasingly complex and 
layered systems based on a largely unchanged rule-processing engine, the 
latter evolved into flexible solutions that are today mostly embedded and 
integrated in other AI systems. 

In AI, rule-based systems (RBS) are built in the knowledge engineering (KE) 
paradigm. When it is hard to acquire and encode expert knowledge, rule 
bases can be also built automatically using dedicated machine learning 
algorithms. These different approaches result in a variety of specific rule 
representations, languages and systems. Therefore, we will outline today's 
landscape of rule-related systems and their applications, as well as the 
challenges they face. 

 

Rules in Cognitive Architectures 

The origins of computer programs based on rules that were supposed to 
model human intelligence are related to the work of Newell and Simon on the 
early Logic Theorist system and the later General Problem Solver (GPS). The 
GPS used Mean-Ends Analysis and a general rule-based representation for 
problem solving (Newell 1972). The solutions proposed in GPS gave the 
motivation for the development of two important cognitive architectures: 
SOAR by Newell (1990) and Laird (2012), and ACT-R by Anderson (1983, 1993). 
They both adopted the Problem-Space Computational Model introduced by 
Newell (1990), which considers intelligent agents that behave on the basis of 
knowledge they possess with actions based on a reasoning process, which in 
turn is a series of decisions based on logical inferences. The inference process 
is modeled with the use of rules. Cognitive architectures also aim to model 
human memory and learning. In such a system, working memory or a fact 
base (corresponding to short-term memory) is used, along with the knowledge 
(rule) base (corresponding to long-term memory). Using this approach, 
reasoning and decision-making can be achieved. Such systems are also 
capable of planning using backwards reasoning. Furthermore, rule learning 
can be achieved, e.g. using a mechanism called chunking in SOAR. 

Cognitive architectures play a very important role in modeling important 
aspects of human intelligence by cognitive simulation. However, from the 
perspective of AI they have certain limitations. Firstly, they adopted the 
original rule-based nucleus of production systems (described next). Therefore, 
the extensions of reasoning algorithms, knowledge base management and 
language extensions were not adopted. Furthermore, they are based on the 
strong assumption that rules are the main (and only) knowledge 
representation used in intelligent systems. Moreover, rules are not just 
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a language for expressing knowledge, but also the meta-language responsible 
for transforming rule-based knowledge. This simplicity can be an important 
limitation. Current AI approaches are much more flexible, open and 
heterogeneous and combine various methods for knowledge representation, 
processing and learning. Some of these will be described next.  

 

Production Rule Systems 

AI research has been driven mainly by construction of practical systems and 
their applications. One of the first AI systems based on rules was Ops5 
(Brownston 1985). Essentially, it shared the basic assumptions of the rule-
based core of cognitive architectures: iIt had a rule base, a rule interpreter 
and working memory. It also provided a simple rule language. Rules stored in 
the rule base were analyzed by the interpreter. When given rule conditions 
were met, a rule was fired. Since a rule could produce a new fact that would 
modify the contents of the working memory, these systems were called 
production rule systems, or sometimes production systems for short. They 
also shared with cognitive architectures the computational limitations of the 
rule interpreter. 

The basic idea of production rule interpretation is to scan a rule, and check if 
the condition is met. This happens if the formula in the condition matches 
a fact stored in the working memory of the system. This is usually called 
a pattern-matching step. However, in practice, rule conditions can be 
composed of many formulas called conditional elements. Moreover, there can 
be tens of thousands of rules and millions of facts in the working memory. 
This makes the naïve pattern-matching algorithm unfeasible due to the 
combinatorial explosion. 

An important step in the development of the production systems was the 
development of the Rete algorithm in the 70s (Forgy 1982). Instead of 
repeating the pattern-matching steps on the contents of the rule base, the 
algorithm pre-processes rules that try to identify equivalent conditional 
expressions. On this basis, it builds a two-layered network (thus the name 
Rete) corresponding to the rule base. The nodes of the network correspond to 
the repeated formulas. This network is then used in the pattern-matching 
process. Since it is more compact than the original rule base and its size is 
much smaller, the inference process can be conducted even in large rule 
bases. While Rete does not fully overcome the combinatorial explosion, it 
pushed the limits of the production systems and allowed for its broad 
adoption in the form of rule-based expert system shells. In fact, several 
improved versions of Rete-like algorithms have been proposed, including 
Treat (Miranker 1987) and Gator (Hanson 1993). 
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Production systems were the starting point for the development of expert 
systems, e.g. MYCIN (Buchanan 1984). These systems used rules to express the 
knowledge of human domain experts in order to solve or support decision 
problems in this domain. As decision models have become more complex, 
decision support systems have developed beyond the original architecture of 
expert systems. However, the core of the technology remains and has been 
successfully used in the form of so-called shells. 

An expert system shell is software that implements a rule-based reasoning 
engine that is able to efficiently process a given rule language. The engine also 
provides additional interfaces to operating systems and other services. A shell 
is often stripped of other tools supporting the KE process. A classic example of 
such a solution is CLIPS (Giarratano 2005), which is a very fast rule engine 
providing a rich rule language whose syntax builds on the original OPS5 
syntax. A more recent re-implementation of CLIPS is Jess (Friedman-Hill 2003), 
which is implemented in the Java programming language and is thus more 
portable than CLIPS and much easier to integrate with Java applications. 
Development of expert systems has also included extensions of the 
rule language in order to handle imprecise or uncertain knowledge (Liebo-
witz 2003) and has led to the creation of an important field of AI: 
knowledge engineering. 

 

Knowledge Engineering with Rules 

Currently, knowledge engineering (KE) remains an active field in AI. While it 
usually has little to do with the development of expert systems, it is constantly 
developing. Roughly speaking, knowledge engineering is about processes, 
methods and tools for capturing, representing, using and managing 
knowledge encoded with symbolic languages, which are most often grounded 
in logic. For in-depth overviews, refer to (van Harmelen 2007). 

From the system development point of view, KE provides a process comprising 
several phases. These mainly include knowledge acquisition, modeling 
(design), implementation (e.g. in a specific rule language), and quality 
assurance. These stages can be supported by dedicated methods and tools. 
Currently, the KE process is usually aimed not at a complete stand-alone 
system, but its knowledge-based component, which is usually a know-
ledge base. 

From the language point of view, KE considers many representations: some 
emphasize the structural aspect of knowledge e.g. Minsky's frames, while 
others including rules are more aimed at processing. Moreover, some of the 
representations can have a well-defined logical formulation. In fact, even 
though rule languages were originally proposed as programming solutions, 
there has been a lot of research on logical formulations of rule-based systems 
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(Ligęza 2006). Such approaches allow for the introduction of purely logical 
means of formal verification of important properties of a system as a whole, 
or at least the rule base (Vermesan 1999). Verification of properties such as 
completeness or determinism is important for assuring the safe operation of 
a system. This is especially important in control applications. In such cases, 
completeness means that the system makes a decision in all possible 
situations. A deterministic system will always make the same decision given 
the same set of premises (input facts). Representations are used to capture and 
encode knowledge that can be used in a reasoning process. With formalized 
representations, this process corresponds to logical inference. Thus, the core 
of this area is often referred to as KRR (Knowledge Representation 
& Reasoning) (Brachman 2004). 

In (Nalepa, Ligęza 2010) we discussed a formalized notation for rule-based 
systems called ALSV(FD) (Attributive Logics with Set Values over Finite 
Domains). This is based on the concept of attributes describing the features of 
the system. Knowledge representations based on attributes are intuitive and 
follow simple technical interpretations in which the behavior of the physical 
systems is formalized by providing the values of system variables. This kind of 
logic is omnipresent in various applications, e.g. attributive decision tables 
and trees (Klosgen 2002). ALSV(FD) assumes the dynamic system perspective, 
in which the state of the system is described by the current values of 
attributes. The transitions between states are triggered where decision rules 
are fired. Furthermore, two types of attributes are identified: simple ones that 
take only one value at a time, and generalized ones that take multiple values 
at a time. This makes it an expressive language suitable not only for rule 
formulation, but also for formalized verification of the system (Nalepa 
2011a et al). 

Creation of a rule base is often a complex and time-consuming process. From 
the design perspective, basic rule representation is not easy to handle. 
Therefore, KE uses other supporting methods that correspond to rules, of 
which the two most important are decision tables and decision trees. What 
makes them especially important from practical point of view is the fact that 
they both can be converted to a set of decision rules. In this way, it is feasible 
to use them as a visual design method for rule bases. 

A decision table can be described as a matrix that represents a rule set. Rules 
in the set have the same structure, i.e. they must have the same sets of 
conditional and decision attributes. Rules can be represented as rows or 
columns of a decision table (depending on the notation). Moreover, table 
notation often introduces additional operators, e.g. for missing or 
unimportant values. Tables are a very transparent engineering notation that 
makes a set of similar rules more transparent and easy to comprehend. 
Decision tables can be interpreted directly by a dedicated engine, or translated 
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to a set of rules. A recent and very significant step in the standardization of 
decision steps is the proposal of Decision Modeling Notation (DMN) by 
Vanthienen and the decision models community (OMG 2011). The second 
important notation is decision trees. In general, each node of a tree 
corresponds to a given system attribute. The node is split and branches 
created for different values of the attribute. As such, a tree is a transparent 
representation that allows the decision making process to be visualized. In 
fact, a number of variants of decision trees are considered in the literature. 

While rule-based shells are mostly used in the implementation phase, the 
practical design of the rule base requires additional methods and tools that 
often make use of the aforementioned solutions. In (Nalepa et al. 2001b), we 
introduced a hybrid representation for complex rule bases called XTT2 
(eXtended Tabular Trees version 2), which was later incorporated as a core 
part of the Semantic Knowledge Engineering approach (Nalepa 2011). XTT2 is 
a formalized rule language for modularized rule bases composed of decision 
units. These units can be represented visually as extended decision tables. 
Each row of the table corresponds to a decision rule built with the ALSF(FD) 
formulas. Rules in a table are processed sequentially. Tables can be linked to 
represent the sequence of the inference process to form a decision network. 
When a given rule fires, the inference control can be transferred to another 
table. Therefore, the interpreter for XTT2 called HeaRT (Nalepa 2010) provides 
a context switching inference mode. By default, the inference process can be 
forward driven. However, goal-oriented inference is also possible. In such 
a case, a target table is provided and the execution plan for the needed tabled 
is built automatically. Furthermore, the resulting rule base can be 
verified on a formal level with respect to important formal properties such 
as completeness or lack of redundancy of knowledge. The XTT2 method 
found several successful applications that are described in more detail in 
(Nalepa 2011). 

 

Learning Rule Bases 

The knowledge engineering approach assumes that the knowledge base is 
designed and built by human knowledge engineers. However, in some cases 
this can be challenging or barely possible. Machine learning (ML) approaches 
have been developed to deal with such difficulties. In ML, setting-dedicated 
algorithms build mathematical models of knowledge needed to solve certain 
tasks, e.g. classification. Some early work in this area was focused on 
inductive concept learning, i.e. construction of logical expressions (here 
concepts) that define a set of objects from examples (thus, this is supervised 
learning). Currently, many models are considered in ML, including logical 
ones such as rules and trees (Flach 2012). In fact, the work on decision trees 
was seen by some as a major step in the earlier days of ML. This includes the 
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formulation of the tree induction algorithm ID3 by Quinlan (1986), which is 
a divide-and-conquer algorithm that builds decision trees using the most 
useful attributes, based on the impurity measure that assesses how effective 
decision trees are in the classification task. 

A typical decision rule-learning algorithm is a covering algorithm (in the sense 
of covering the search example space) that iteratively builds new rules and 
then removes the examples covered by them. Rule learning was pioneered by 
Michalski (1975) with the AQ system. Decision rules are mainly used for 
predictive tasks such as classification; however, descriptive cases are also 
considered as they also play an important role. In an unsupervised learning 
scheme, association rules can be discovered. Such rules are not used for 
decision making, such as classification. Instead, they capture correlations 
between features in the data set. A well-known algorithm for association rule 
learning is the Apriori algorithm (Agraval et al. 1993). The most expressive 
rule languages in ML are considered in the inductive logic programming 
approach, in which Horn rules (used for example in the Prolog programming 
language) can be built automatically. 

Recently, the concept of incremental learning has gained a lot of attention. 
A typical supervised ML method (batch learner) requires re-learning of the 
model with a change in the training set (batch) of examples. However, this can 
be computationally intensive when the set of learning data is constantly 
updated, e.g., when it is based on a stream of experimental data. To solve such 
problems, a new generation of incremental learning algorithms that learn 
from data streams has been introduced (Gama 2010). They can be divided into 
1) batch learners that were adapted to act as incremental learning algorithms, 
and 2) purely incremental learners designed for the purpose of knowledge 
discovery from data streams, i.e. Hoeffding trees (Domingos 2000). 

In (Nalepa 2013) we considered an adapted batch learner that could model 
user habits related to the use of applications on a mobile device, thus 
providing important energy savings. More recently, in our yet unpublished 
work we demonstrated the use of Hoeffding trees for similar tasks, in which 
the tree structure was converted into a set of XTT2 rules. In fact, we proposed 
an original extension of the algorithm, in which uncertain information can 
also be handled effectively. A recent and interesting area for applying rules 
both in KE and ML settings is so-called context-aware systems. 

 

Use of Rules in Context-Aware Systems 

The exposure of context is related to the impossibility of representing 
complete world knowledge in a system. At the same time, human intelligence 
is often about recognition of what knowledge is relevant in a given situation or 
state. Therefore, context-aware systems need to recognize a given context to 
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select relevant knowledge in order to take appropriate action. A common 
definition of context is “any information that can be used to characterize the 
situation of an entity” (Dey 2000). This information may be related to the 
location of the user (spatial context), presence or absence of other devices and 
users, or collaboration with others (social context), time (temporal context), as 
well as user activity. Contextual data can be provided in pervasive computing 
environments. Machine learning methods can be used to gain knowledge 
about patterns of human behavior, including daily habits and routine changes 
in the environment. 

Representing contextual knowledge is non-trivial. Models of such knowledge 
should be scalable, transparent to the user, and possible to improve using new 
data. In (Nalepa 2013) we proposed a learning middleware architecture based 
on XTT2 rules which is able to learn from environmental data. This 
architecture is aimed at context-aware systems that run on mobile devices, 
such as smart phones. In this case, the environmental data can be acquired in 
real time from different sensors. What makes building such systems 
a challenge is their high dynamics. Sensor readings may be temporarily 
unavailable or inaccurate, thus introducing uncertainty. This has to be 
represented in the knowledge model. In (Nalepa, Bobek 2014) we proposed an 
extension of the XTT2 rule base that allows Certainty Factors to be introduced. 
By using them, it is possible to represent knowledge of different quality. 
Moreover, system decisions such as recommendations can be given with 
a level of certainty that can be improved over time with additional data. 

 

Rule Diversity 

The discussion provided so far clearly demonstrates that the current 
landscape of rule-based systems is rich and diverse in many ways. Firstly, 
a number of different rule types have to be identified to understand their 
possible interpretation and use. The RuleML Consortium (http://ruleml.org) 
identifies some of the most important types of rules. Combined with what has 
been said about the ML perspective, these can be the following types of rules: 

1. production – with forward chaining, i.e. data-driven reasoning, from 
a logical point of view is related to deduction, 

2. reaction – similar to the above, firing a rule usually can not only 
produce a new fact, but also triggers an action based on certain 
conditions (a dedicated notation for such rules is, for example, ECA 
(Event-Condition-Action), 

3. derivation – with backwards chaining, i.e. goal-oriented reasoning, 
which from a logical point of view is related to abduction, 
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4. integrity – wherein a set of rules defines conditions that have to be met 
for a certain system to operate properly, 

5. constraint – similar to the above, wherein a set of rules can be 
transformed into a certain computational task to be solved; such rules 
are considered in CSP (constraint-satisfaction problems/programming),  

6. association – such rules capture not decisions, but correlations 
between attributes, as is the case with rule induction in association 
rule mining in ML, 

7. transformation – data and knowledge transformation procedures can 
be expressed with such rules, e.g. in the XSLT language (Clark 1999). 

Moreover, they can be formalized on a different level. After (Ligeza 2006), the 
main levels of formalization to be identified are: 

1) propositional – rules can be described using only propositional logic, 
and facts correspond to binary statements, 

2) attributive – rule structure remains easy to interpret, but the language 
to describe facts is richer and allows numerous values and relations to 
be captured. This is the case of ALSV(FD) logic and XTT2 rules. 

3) Horn – rules are logical clauses in first order logic, wherein all but one 
literals are true. Such rules are used in logic programming languages 
such as Datalog and Prolog, which also allow logical variables. 

4) first order logic – rules are expressed with different subsets of first 
order logic; this is the case with the family of Description Logics 
(Baader 2003) and various other representations. 

In fact, each of these representations can also impose different interpreter 
modes and applications.  

 

Rule Interpretation Methods 

Classic expert systems evolved into at least two different classes of systems. In 
the first are modules that can be integrated into a larger applications, as this is 
often the case with Jess. The second includes full-fledged frameworks such as 
Business Rules Management Systems (BRMS). Such systems provide complete 
platforms for developing decision support systems based on rules, including 
rule repositories and business process engines. A prime example of such 
system is Drools, which is composed of a number of modules, including an 
Expert rule engine, a Guvnor repository, and a jBPM process engine. In such 
a system, it is common to combine rules with a so-called business process that 
controls high-level inference flow. 
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In numerous works, we have proposed extensions of this model. In (Kluza 
2012) we demonstrated the design of a process model combined with a rule 
model. Oryx, an open editor for BPMN, which is a visual notation for business 
processes, was enhanced to include XTT2 rule models. Furthermore, in (Kluza 
2013) we proposed an algorithm that shows how a process model combined 
with rules could be designed. How such a model can be run was discussed in 
(Nalepa 2013). In that paper we proposed an extension of the open source 
process engine Activti that allows for integration with the HeaRT rule engine 
that runs the combined models. 

Rules are still applied in a number of new domains; some are discussed in 
a recent book (Giurca 2009). One such application is the Semantic Web project 
(Berners-Lee 2001) that aimed to develop computer agents that automate 
common tasks for Internet users. The project introduced new important 
knowledge representation methods such as RDF and used formalized methods 
for reasoning, namely Description Logics (Baader 2003). Moreover, it assumed 
that reasoning would be performed with the use of rules. However, 
integrating typical production rules such as reasoning with the Semantic Web 
and Description Logics posed a major challenge.  

A proposed solution to this problem was included in (Nalepa 2010), where we 
introduced a logical framework combining ALSV(FD) with Description Logics. 
This would allow for the combination of XTT2 rules with the formal ontologies 
used in the Semantic Web. Moreover, since a Web environment is distributed, 
many challenges arise with the design of the knowledge base. In fact, 
a number of users or agents generally cooperate in the design processes. Such 
a situation can be considered as collective knowledge engineering. In (Nalepa 
2010) we considered this and proposed a semantic wiki system combined with 
a logical reasoning module in the Prolog language that supports the 
collaborative design process of the knowledge base. 

 

Concluding Remarks 

For many years, rules have been a useful symbolic knowledge representation 
in cognitive science and artificial intelligence. In this paper, we have discussed 
the common roots of the use of rules in these domains, i.e. cognitive 
architectures and production systems. We have characterized the main areas 
of study regarding rules in artificial intelligence. Furthermore, we have briefly 
commented on our contributions to rule-based systems. These include the 
ALSV(FD) logic, the XTT2 rule representation and design method, as well as 
their applications in business decision support systems, context-aware systems 
and the Semantic Web. 
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The development of rule-based systems has progressed much since the 
original production systems in the 1970s. While all the qualities of rules such 
as transparency and intuitive representation still hold, the design of large 
systems based of rules is a non-trivial task. It requires appropriate design 
methods and good quality analysis tools. Currently, mainstream AI seems to 
have little interest in using rules to model intelligence in a general sense. 
However, for AI researchers rules have become a standard yet still very 
elegant and effective engineering solution for modeling reasoning and 
decision support. 
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