Aspect seeing and mathematical representations

Avant, Vol. X, No. 2/2019, doi: 10.26913/avant.2019.02.27
published under license CC BY-NC-ND 3.0

Valeria Giardino orcid-id
CNRS – Archives Henri-Poincaré
Philosophie et Recherches sur les Sciences et les Technologies
valeria.giardino @ univ-lorraine.fr

Jan Wöpking
Independent Researcher

Received 10 July 2018; accepted 20 November 2018; published 31 December 2019.          Download full text

Abstract: In the present article the productive role of visual representations in mathematics is explained by referring to “aspect seeing”. First, the notion of aspect seeing is introduced, as proposed by Wittgenstein in his works. Second, the pragmatic dimension of aspect seeing is discussed. Third, three key examples of aspect seeing in mathematics are presented with the aim of showing the relevance of aspect shifting in important areas of mathematics by looking at both its pragmatic dimension and its relationship with conceptual mastery. Finally, some conclusions are given about aspect seeing as a human phenomenon.

Keywords: representation; mathematics; aspect seeing; visual; perception; Wittgenstein


References

Avigad, J. (2008). Understanding Proofs. (In P. Mancosu (Ed.), The Philosophy of Mathematical Practice (pp. 317-353), Oxford: Oxford University Press.)
https://doi.org/10.1093/acprof:oso/9780199296453.003.0013
Avigad et al. (2009). A Formal System for Euclid’s Elements. The Review of Symbolic Logic, 2(4), 700-768.
https://doi.org/10.1017/S1755020309990098
Azzouni, J. (2005). Is There Still a Sense in which Mathematics Can Have Foundations. (In G. Sica (Ed.), Essays on the Foundations of Mathematics and Logic (pp. 9-47). Milan: Polimetrica.)
Baz, A. (2000). What’s the Point of Seeing Aspects? Philosophical Investigations, 23(2), 97-121.
https://doi.org/10.1111/1467-9205.00116
Bender, J. & Marrinan, M. (2010). The Culture of Diagram. Stanford: Stanford University Press.
Bruce, V. & Green, P., Georgeson, M. (2003). Visual Perception: physiology, psychology and Ecology (4th ed.). Hove-New York: Psychology Press.
Catton P. & Montelle, C. (2012). To Diagram, to Demonstrate: To Do, To See, and To Judge in Greek Geometry. Philosophia Mathematica, 20(1), 25-57.
https://doi.org/10.1093/philmat/nkr037
Coliva, A. (2012). Human diagrammatic reasoning and seeing-as. Synthese, 186(1), 121-148.
https://doi.org/10.1007/s11229-011-9982-9
Floyd, J. (2012). Das Überraschende: Wittgenstein on the Surprising in Mathematics. (In J. Ellis & D. Guevara (Eds.), Wittgenstein and the Philosophy of Mind (pp. 225-258). Oxford: Oxford University Press.)
https://doi.org/10.1093/acprof:oso/9780199737666.003.0010
Floyd, J. (2010). Wittgenstein on Aspect-Perception, Logic, and Mathematics. (In W. Day & V.J. Krebs (Eds.), Seeing Wittgenstein anew (pp.314-337). Cambridge: Cambridge University Press.)
Friedman, M. (1985). Kant’s Theory of Geometry. The Philosophical Review, 94(4), 455-506.
https://doi.org/10.2307/2185244
Giaquinto, M. (1993). Diagrams. Socrates and Meno’s Slave. International Journal of Philosophical Studies, 1(1), 81-97.
https://doi.org/10.1080/09672559308570763
Giaquinto, M. (2007). Visual thinking in mathematics. Oxford: Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780199285945.001.0001
Grosholz, E. (2007). Representation and Productive Ambiguity in Mathematics and the Sciences. Oxford-New York: Oxford University Press.
Heath, T. (1956). The Thirteen Books of Euclid’s Elements – translated from the text of Heiberg. New York: Dover.
Jastrow, J. (1900). Facts and fables in Psychology. London: Macmillan.
https://doi.org/10.1037/10919-000
Kirsh, D. (1995). The intelligent use of space. Artificial Intelligence, 73(1), 31-68.
https://doi.org/10.1016/0004-3702(94)00017-U
Lycan, W. G. (1971). Gombrich, Wittgenstein, and the Duck Rabbit. Journal of Aesthetics and Art Criticism, 30 (2), 229-237.
https://doi.org/10.2307/429542
Macbeth, D. (2009). Meaning, Use, and Diagrams. Etica & Politica, Ethics & Politics, XI(1), 369-384.
Macbeth, D. (2010). Diagrammatic Reasoning in Euclid’s Elements. (In B. Van Kerkhove, J. De Vuyst & J. P. Van Bendegem (Eds.), Philosophical Perspectives on Mathematical Practice (pp. 235 – 267). London: College Publications.)
Manders, K. (2008). The Euclidean Diagram (1995). (In Paolo Mancosu (Ed.), The Philosophy of Mathematical Practice (pp 80-133). Oxford: Oxford University Press.)
https://doi.org/10.1093/acprof:oso/9780199296453.003.0005
Mühlhölzer, F. (2010), Braucht die Mathematik eine Grundlegung? Ein Kommentar des Teils III von Wittgenteins Bemerkungen über die Grundlagen der Mathematik. Frankfurt a.M.: Klostermann.
Mühlhölzer, F. (2002). Wittgenstein and Surprises in Mathematics. (In R. Haller & K. Puhl (Eds.), Wittgenstein and the Future of Philosophy: A Reassessment after 50 Years (Proceedings of the 24th Internationational Wittgenstein-Symposium, Kirchberg am Wechsel, 2001) (pp. 306 – 315). Wien: öbv&hpt.)
Mumma, J. (2010). Proofs, Pictures, and Euclid. Synthese, 175(2), 255-287.
https://doi.org/10.1007/s11229-009-9509-9
Oliveri, G. (1997). Mathematics. A Science of Patterns. Synthese, 112(3), 379-402.
https://doi.org/10.1023/A:1004906107430
Palmer, S. (1999). Vision Science: photons to phenomenology. Cambridge, Mass.: MIT Press.
Peterson, M. A., & Gibson, B. S. (1993). Shape recognition inputs to figure-ground organization in three-dimensional grounds. Cognitive Psychology, 25(3), 383-249.
https://doi.org/10.1006/cogp.1993.1010
Peterson, M. A., Harvey, E. M., & Weidenbacher, H. J. (1991). Shape recognition contribution to figure-ground reversal: Which route counts? Journal of Experimental Psychology: Human Perception and Performance, 17(4), 1075-1089.
https://doi.org/10.1037/0096-1523.17.4.1075
Roitman, J. (1990), Introduction to modern set theory, New York: Wiley.
Rubin, E. (1921). Visuell Wahrgenommene Figuren. Kobenhaven: Glydenalske boghandel.
Schroeder, S. (2010). A Tale of two problems: Wittgenstein’s discussion of aspect perception. (In J. Cottingham & P. Hacker (Eds.), Mind, method and morality: essays in honour of Anthony Kenny (pp. 352 – 371). Oxford: Oxford University Press.)
Sherry, D. (1999). The Role of Diagrams in Mathematical Arguments. Foundations of science, 14(1), 59-74.
https://doi.org/10.1007/s10699-008-9147-6
Shin, S. (2002). The Iconic Logic of Peirce’s Graphs. Cambridge, Mass.: MIT Press.
https://doi.org/10.7551/mitpress/3633.001.0001
Shin, S. (2012). The forgotten individual: diagrammatic reasoning in mathematics. Synthese, 186(1), 149-168.
https://doi.org/10.1007/s11229-012-0075-1
Wittgenstein, L. (1953). Philosophical Investigations (= PI), G.E.M. Anscombe & R. Rhees (Eds.), G.E.M. Anscombe (Trans.), Oxford: Blackwell, second edition 1958.
Wittgenstein, L. (1956). Remarks on the Foundations of Mathematics (= RFM), G. H. v. Wright, R. Rhees & G.E.M. Anscombe (Eds.), G.E.M. Anscombe (Trans.). Oxford: Blackwell, revised edition 1978.
Wittgenstein, L. (1961). Tractatus Logico-Philosophicus (= TLP). D.F. Pears & B.F. McGuinness (Trans.), New York: Humanities Press.
Wittgenstein, L. (1974). Philosophical Grammar (= PG). R. Rhees (Ed.), A. Kenny (Trans.). Oxford: Blackwell.
Wittgenstein, L. (1980). Remarks on the Philosophy of Psychology, vol. 1 (= RPP I). G.E.M. Anscombe & G.H. v. Wright (Eds.), G.E.M. Anscombe (Trans.). Oxford: Blackwell.

Comments are closed.