Understanding Predictive Processing. A Review

Avant, Vol. XII, No. 1, https://doi.org/10.26913/avant.2021.01.04
published under license CC BY-NC-ND 3.0

Michał Piekarski orcid-id
Institute of Philosophy
Cardinal Stefan Wyszyński University in Warsaw
m.piekarski@uksw.edu.pl

Received 4 August 2020; accepted 31 August 2021; published 5 September 2021.
Download full text


Abstract: The purpose of this paper is to provide a systematic review of the Predictive Processing framework (hereinafter PP) and to identify its basic theoretical difficulties. For this reason, it is, primarily, polemic-critical and, secondarily, historical. I discuss the main concepts, positions and research issues present within this framework (§1-2). Next, I present the Bayesian-brain thesis (§3) and the difficulty associated with it (§4). In §5, I compare the conservative and radical approach to PP and discuss the internalist nature of the generative model in the context of Markov blankets. The possibility of linking PP with the free energy principle (hereinafter FEP) and the homeostatic nature of predictive mechanisms is discussed in §6. This is followed by the presentation of PP’s difficulties with solving the dark room problem and the exploration-exploitation trade-off (§7). I emphasize the need to integrate PP with other models and research frameworks within cognitive science. Thus, this review not only discusses PP, but also provides an assessment of the condition of this research framework in the light of the hopes placed on it by many researchers. The Conclusions section discuss further research challenges and the epistemological significance of PP.

Keywords: predictive processing; Bayesian brain; Bayesian inference; Bayesian models; prediction; prediction error; generative model; hierarchical inference; top-down processing; free energy principle; active inference; Markov blanket; perceptual inference; precision; perception; mechanisms; philosophy of mind; philosophy of cognitive science; epistemology


References

Adams, R. A., Brown, H. R. & Friston K. J. (2014). Bayesian inference, predictive coding and delusions. Avant, 3(5), 51-88.
https://doi.org/10.26913/50302014.0112.0004
Adams R. A., Stephan K. E., Brown H. R., Frith C. D. & Friston K. J. (2013) The computational anatomy of psychosis. Front. Psychiatry 4:47.
https://doi.org/10.3389/fpsyt.2013.00047
Anderson, M. L. & Chemero, T. (2013). The problem with brain GUTs: conflation of different senses of “prediction” threatens metaphysical disaster. Behavioral and Brain Sciences, 36 (3), 204-205.
https://doi.org/10.1017/S0140525X1200221X
Andrews, M. (2021). The math is not the territory: navigating the free energy principle. Biol Philos, 36, 30.
https://doi.org/10.1007/s10539-021-09807-0
Allen, M. & Friston, K. J. (2018). From cognitivism to autopoiesis: towards a computational fra-mework for the embodied mind. Synthese, 195(6), 2459-2482.
https://doi.org/10.1007/s11229-016-1288-5
Badcock, P. B. Friston, K. J. & Ramstead, M. J. D. (2019).The hierarchically mechanistic mind: A free-energy formulation of the human psyche. Physics of Life Reviews.
https://doi.org/10.1016/j.plrev.2018.10.002
Bechtel, W. (2006). Discovering Cell Mechanisms: The Creation of Modern Cell Biology. Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9781139164962
Beni, M. D. (2018). The reward of unification: A realist reading of the predictive processing theory. New Ideas in Psychology, 48, 21-26.
https://doi.org/10.1016/j.newideapsych.2017.10.001
Bernard, C. (1865). Introduction à l’étude de la médecine expérimentale. Paris: Éditions Garnier-Flammarion.
Bowers J. S. & Davis C. J. (2012). Bayesian just-so stories in psychology and neuroscience. Psychol Bull. 138(3), 389-414.
https://doi.org/10.1037/a0026450
Brown, L. D. (1981). A Complete Class Theorem for Statistical Problems with Finite-Sample Spaces. Ann Stat, 9, 1289-1300.
https://doi.org/10.1214/aos/1176345645
Bruineberg, J. (2017). Active Inference and the Primacy of the ‘I Can’. In T. Metzinger & W. Wiese (Eds.). Philosophy and Predictive Processing: 5 (pp. 1-18). Frankfurt am Main: MIND Group.
Bruineberg, J., Dołęga, K., Dewhurst, J. & Baltieri, M. (2020) The Emperor’s New Markov Blankets. [Preprint]
Bruineberg, J. & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599.
https://doi.org/10.3389/fnhum.2014.00599
Bruineberg, J., Kiverstein, J. & Rietveld, E. (2018). The anticipating brain is not a scientist: the free-energy principle from an ecological-enactive perspective. Synthese, 195, 2417-2444.
https://doi.org/10.1007/s11229-016-1239-1
Buckley, C. L., Sub Kim, C., McGregor, S. & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55-79.
https://doi.org/10.1016/j.jmp.2017.09.004
Calvo, P. & Friston, K. J. (2017). Predicting green: really radical (plant) predictive processing. J R Soc Interface, 14: 20170096.
https://doi.org/10.1098/rsif.2017.0096
Chater, N., Oaksford, M., Hanh, U. & Heit, E. (2010). Bayesian models of cognition. Wiley Interdiscip Rev Cogn Sci., 1(6), 811-823.
https://doi.org/10.1002/wcs.79
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181-204.
https://doi.org/10.1017/S0140525X12000477
Clark, A. (2015a). Radical predictive processing. The Southern Journal of Philosophy, 53 (S1), 3-27.
https://doi.org/10.1111/sjp.12120
Clark, A. (2015b). Predicting Peace: The End of the Representation Wars-A Reply to Michael Madary. In T. Metzinger & J. M. Windt (Eds.). Open MIND: 7(R) (pp. 1-7). Frankfurt am Main: MIND Group.
Clark, A. (2016). Surfing Uncertainty. Prediction, Action and the Embodied Mind. Oxford: Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780190217013.001.0001
Clark, A. (2017). Predictions, precision, and agentive attention. Consciousness and Cognition, 56, 115-119.
https://doi.org/10.1016/j.concog.2017.06.013
Clark, A. (2018). A nice surprise? Predictive processing and the active pursuit of novelty. Phenom Cogn Sci, 17, 521-534.
https://doi.org/10.1007/s11097-017-9525-z
Clark, A. (2019). Beyond desire? Agency, choice, and the predictive mind. Australasian Journal of Philosophy, 1-15.
https://doi.org/10.1080/00048402.2019.1602661
Colombo, M., Elkin, E. & Hartmann, S. (2018). Being Realist about Bayes, and the Predictive Processing Theory of Mind. The British Journal for the Philosophy of Science, axy059.
https://doi.org/10.1093/bjps/axy059
Colombo, M., Palacios, P. (2021). Non-equilibrium thermodynamics and the free energy principle in biology. Biol Philos, 36, 41 (2021).
https://doi.org/10.1007/s10539-021-09818-x
Colombo, M. & Seriès, P. (2012). Bayes in the brain-On Bayesian modelling in neuroscience. British Journal for the Philosophy of Science, 63 (3), 697-723.
https://doi.org/10.1093/bjps/axr043
Colombo, M. & Wright, C. (2021). First principles in the life sciences: The free-energy principle, organicism, and mechanism. Synthese, 198, 3463-3488.
https://doi.org/10.1007/s11229-018-01932-w
Conant, R. & Ashby, W. R. (1970). Every good regulator of a system must be a model of that system. International Journal of Systems Science, 1 (2), 89-97.
https://doi.org/10.1080/00207727008920220
Constant, A. (2021). The free energy principle: it’s not about what it takes, it’s about what took you there. Biol Philos, 36, 10.
https://doi.org/10.1007/s10539-021-09787-1
Constant, A., Ramstead, M. J. D., Veissière, S. P. L. & Friston, K. J. (2019). Regimes of Expectations: An Active Inference Model of Social Conformity and Human Decision Making. Front. Psychol. 10: 679. 1-15.
https://doi.org/10.3389/fpsyg.2019.00679
Corcoran, A. W., & Hohwy, J. (2019). Allostasis, interoception, and the free energy principle: Feeling our way forward. In M. Tsarkiris, & H. De Preester (Eds.). The Interoceptive Mind: From homeostasis to awareness (pp. 272-292). Oxford: Oxford University Press.
https://doi.org/10.1093/oso/9780198811930.003.0015
Corcoran, A.W., Pezzulo, G. & Hohwy, J. (2020). From Allostatic Agents to Counterfactual Cognisers: Active Inference, Biological Regulation, and The Origins of Cognition. Biol Philos, 35, 32.
https://doi.org/10.1007/s10539-020-09746-2
Cosmides, L. & Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty. Cognition, 58, 1-73.
https://doi.org/10.1016/0010-0277(95)00664-8
Craver C. F. (2007). Explaining the brain. Oxford: University Press Oxford
https://doi.org/10.1093/acprof:oso/9780199299317.001.0001
Craver, C. F. & Tabery, J. (2019). Mechanisms in Science. In E. N. Zalta (Ed.). The Stanford Encyclopedia of Philosophy (Summer 2019 Edition). URL = <https://plato.stanford.edu/archives/sum2019/entries/science-mechanisms/>. access 20.03.2020.
Danks, D. (2014). Unifying the mind: Cognitive representations as graphical models. Cambridge, MA: The MIT Press.
https://doi.org/10.7551/mitpress/9540.001.0001
Darden, L. (2006). Reasoning in Biological Discoveries, Cambridge, MA: Cambridge University Press.
https://doi.org/10.1017/CBO9780511498442
Darden, L. & Maull, N. (1977). Interfield Theories. Philosophy of Science, 44, 43-64.
https://doi.org/10.1086/288723
Dayan, P., Hinton, G. E., Neal, R. M. & Zemel, R. S. (1995). The Helmholtz machine. Neural Comput, 7, 889-904.
https://doi.org/10.1162/neco.1995.7.5.889
Dołęga, K. (2017). Moderate Predictive Processing. In T. Metzinger & W. Wiese (Eds.). Philosophy and Predictive Processing: 10 (pp. 1-19). Frankfurt am Main: MIND Group.
Dołęga, K. & Dewhurst, J. (2021). Fame in the predictive brain: a deflationary approach to explaining consciousness in the prediction error minimization framework. Synthese, 198, 7781-7806.
https://doi.org/10.1007/s11229-020-02548-9
Easwaran, K. (2011). Bayesianism II: Applications and Criticisms. Philosophy Compass, 6(5), 321-332.
https://doi.org/10.1111/j.1747-9991.2011.00398.x
Egan, F. (2014). How to think about mental content. Philos Stud 170:115-135.
https://doi.org/10.1007/s11098-013-0172-0
Elqayam, S. & Evans J. S. (2011). Subtracting “ought” from “is”: descriptivism versus normativism in the study of human thinking. Behav Brain Sci, 34(5), 233-248.
https://doi.org/10.1017/S0140525X1100001X
Eva, B. & Hartman, S. (2020). On the Origins of Old Evidence. Australasian Journal of Philosophy, 3(98), 481-494.
https://doi.org/10.1080/00048402.2019.1658210
Feldman, H. & Friston, K. J. (2010) Attention, uncertainty and free-energy. Front Hum Neurosci, 4(215).
https://doi.org/10.3389/fnhum.2010.00215
Felleman, D. & Van Essen, D. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1(1), 1-47.
https://doi.org/10.1093/cercor/1.1.1
Fink, S. B. & Zednik, C. (2017). Meeting in the Dark Room: Bayesian Rational Analysis and Hierarchical Predictive Coding. In T. Metzinger & W. Wiese (Eds.). Philosophy and Predictive Processing: 14, (pp. 1-13). Frankfurt am Main: MIND Group.
Fitelson, B. (2006). The Paradox of Confirmation. Philosophy Compass, 1(1), 95-113.
https://doi.org/10.1111/j.1747-9991.2006.00011.x
Friston, K. J. (2003). Learning and inference in the brain. Neural Networks, 16. 1325-1352.
https://doi.org/10.1016/j.neunet.2003.06.005
Friston, K. J. (2005). A theory of cortical responses. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci, 360, 815-836.
https://doi.org/10.1098/rstb.2005.1622
Friston, K. J. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4 (11), e1000211.
https://doi.org/10.1371/journal.pcbi.1000211
Friston, K. J. (2009). The free-energy principle: a rough guide to the brain? Trends Cogn Sci, 13(7), 293-301.
https://doi.org/10.1016/j.tics.2009.04.005
Friston, K. J. (2010). The free-energy principle: a unified brain theory? Nat. Rev. Neurosci 11, 127-138.
https://doi.org/10.1038/nrn2787
Friston, K. J. (2011). What is optimal about motor control? Neuron, 72(3), 488-498.
https://doi.org/10.1016/j.neuron.2011.10.018
Friston, K. J. (2012). A Free Energy Principle for Biological Systems. Entropy, 14, 2100-2121.
https://doi.org/10.3390/e14112100
Friston, K. J. (2013a). Active inference and free energy. Behav Brain Sci, 36(3), 212-213.
https://doi.org/10.1017/S0140525X12002142
Friston K. J. (2013b). Life as we. know it. J R Soc Interface, 10: 20130475.
https://doi.org/10.1098/rsif.2013.0475
Friston, K. J., Daunizeau, J. & Kiebel, S. J. (2009). Reinforcement learning or active inference? PLoS ONE, 4 (2009), e6421.
https://doi.org/10.1371/journal.pone.0006421
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: A process theory. Neural Computation, 29(1), 1-49.
https://doi.org/10.1162/NECO_a_00912
Friston, K. J., Fortier, M. & Friedman, D. A. (2018). Of woodlice and men: A Bayesian account of cognition, life and consciousness. An interview with Karl Friston. ALIUS Bulletin, 2, 17-43.
Friston, K. J., Harrison, L. & Penny, W. (2003) Dynamic causal modelling. Neuroimage, 19. 1273-1302.
https://doi.org/10.1016/S1053-8119(03)00202-7
Friston, K. J. & Kiebel, S. J. (2009). Predictive coding under the free-energy principle. Phil. Trans. R. Soc. B, 364, 1211-1221.
https://doi.org/10.1098/rstb.2008.0300
Friston, K. J., Kilner, J. & Harrison, L. (2006). A free energy principle for the brain. J Physiol Paris, 100(1-3), 70-87.
https://doi.org/10.1016/j.jphysparis.2006.10.001
Friston, K. J., Mattout, J., Trujillo-Barreto, N., Ashburner, J. & Penny, W. (2006). Variational free energy and the Laplace approximation. Neuroimage, 34 (1), 220-234.
https://doi.org/10.1016/j.neuroimage.2006.08.035
Friston, K. J. & Stephan, K. E. (2007). Free energy and the brain. Synthese, 159, 417-458.
https://doi.org/10.1007/s11229-007-9237-y
Friston, K., Thornton, C. & Clark, A. (2012). Free-energy minimization and the dark-room problem. Front. Psychol. 3:130.
https://doi.org/10.3389/fpsyg.2012.00130
Friston, K. J., Wiese, W. & Hobson, J. A. (2020). Sentience and the origins of consciousness: From cartesian duality to Markovian monism. Entropy, (22), 516-516.
https://doi.org/10.3390/e22050516
Ghijsen, H. (2021). Predictive processing and foundationalism about perception. Synthese, 198, 1751-1769.
https://doi.org/10.1007/s11229-018-1715-x
Gibson, J. J. (1966). The Senses Considered as Perceptual Systems. Boston: Houghton Mifflin.
Gibson, J. J. (1979). The Ecological Approach to Visual Perception. New York: Psychology Press.
Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K. & Critchley, H. D. (2015). Knowing your own heart: Distinguishing interoceptive accuracy from interoceptive awareness. Biological Psychology, 104, 65-74.
https://doi.org/10.1016/j.biopsycho.2014.11.004
Gigerenzer, G. & Brighton, H. (2009). Homo Heuristicus: Why Biased Minds Make Better Inferences. Topics in Cognitive Science, 1(1), 107-143.
https://doi.org/10.1111/j.1756-8765.2008.01006.x
Glymour, C. (1980). Theory and Evidence. Princeton: Princeton University Press.
Glymour, C. (2001). The Mind’s Arrows: Bayes Nets and Graphical Causal Models in Psychology. Cambridge, MA: MIT Press.
https://doi.org/10.7551/mitpress/4638.001.0001
Gładziejewski P (2016) Predictive coding and representationalism. Synthese, 193, 559-582.
https://doi.org/10.1007/s11229-015-0762-9
Gładziejewski, P. (2017a). The Evidence of the Senses – A Predictive Processing-Based Take on the Sellarsian Dilemma. In T. Metzinger & W. Wiese (Eds.). Philosophy and Predictive Processing: 15 (pp. 1-15). Frankfurt am Main: MIND Group.
Gładziejewski, P. (2017b). Just how conservative is conservative predictive processing? Hybris 38, 98-122.
Gładziejewski, P (2019). Mechanistic unity and the predictive mind. Theory & Psychology, 29(5), 657-675.
https://doi.org/10.1177/0959354319866258
Gładziejewski, P. (2021) Perceptual justification in the Bayesian brain: a foundherentist account. Synthese. 1-25.
https://doi.org/10.1007/s11229-021-03295-1
Gładziejewski, P. & Miłkowski, M. (2017) Structural representations: causally relevant and different from detectors. Biol Philos, 32, 337-355.
https://doi.org/10.1007/s10539-017-9562-6
Godfrey-Smith, P. (1996). Complexity and the Function of Mind in Nature. Cambridge University Press, 1996.
https://doi.org/10.1017/CBO9781139172714
Gottlieb, J. (2012). Attention, learning, and the value of information. Neuron, 76, 281-295.
https://doi.org/10.1016/j.neuron.2012.09.034
Gregory, R. L. (1980). Perceptions as hypotheses. Phil. Trans. R. Soc. Lond., Series B, Biological Sciences, 290, 181-197.
https://doi.org/10.1098/rstb.1980.0090
Griffiths, T. L., Chater, N., Norris, N. & Pouget, A. (2012). How the Bayesians got their beliefs (and what those beliefs actually are): comment on Bowers and Davis (2012). Psychol Bull. 138(3), 415-422.
https://doi.org/10.1037/a0026884
Gordon, N., Tsuchiya, N., Koenig-Robert, R. & Hohwy, J. (2018). Expectation and attention increase the integration of top-down and bottom-up signals in perception through different pathways. bioRxiv, 446948.
https://doi.org/10.1101/446948
Harman, G. (1973). Thought. Princeton: Princeton University Press.
Harkness, D. L. (2015). From Explanatory Ambition to Explanatory Power – A Commentary on Jakob Hohwy. In T. Metzinger & J. M. Windt (Eds.). Open MIND: 19(C) (pp. 1-9). Frankfurt am Main: MIND Group.
Harkness, D. L. & Keshava, A. (2017). Moving from the What to the How and Where – Bayesian Models and Predictive Processing. In T. Metzinger & W. Wiese (Eds.). Philosophy and Predictive Processing: 5 (pp. 1-10). Frankfurt am Main: MIND Group.
Harrison, C. W. (1952). Experiments with linear prediction in television. Bell System Technical Journal, 31(4), 764-783.
https://doi.org/10.1002/j.1538-7305.1952.tb01405.x
Helmholtz, H. v. (1867). Handbuch der Physiologishen Optik. Leipzig: Leopold Voss.
Hempel, C. (1965). Aspects of Scientific Explanation. New York, NY: Free Press.
Hesp, C., Ramstead, M. J. D., Constant, A., Badcock, P., Kirchhoff, M. & Friston, K. J. (2019). A Multi-scale View of the Emergent Complexity of Life: A Free-Energy Proposal. In G. Georgiev, J. Smart, C. Flores Martinez & M. Price (Eds.). Evolution, Development, and Complexity: Multiscale Models in Complex Adaptive Systems (pp. 195-227). Springer Proceedings in Complexity.
https://doi.org/10.1007/978-3-030-00075-2_7
Hinton, G. E., Sejnowski, T. J. (1983) Optimal perceptual inference. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. (Washington DC).
Hipólito, I., Ramstead, M. J. D., Convertino, L., Bhat, A., Friston, K. J. & Parr, T. (2021). Markov Blankets in the Brain. Neuroscience & Biobehavioral Reviews, 125, 88-97.
https://doi.org/10.1016/j.neubiorev.2021.02.003
Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780199682737.001.0001
Hohwy, J. (2014). The self-evidencing brain. Noûs, 50(2), 259-285.
https://doi.org/10.1111/nous.12062
Hohwy, J. (2015a). The Neural Organ Explains the Mind. In T. Metzinger & J. M. Windt (Eds.). Open MIND: 19(T) (pp. 1-22). Frankfurt am Main: MIND Group.
Hohwy, J. (2015b). The Diversity of Bayesian Explanation – A Reply to Dominic L. Harkness. In T. Metzinger & J. M. Windt (Eds.). Open MIND: 19(R) (pp. 1-6). Frankfurt am Main: MIND Group.
Hohwy, J. (2018). The Predictive Processing Hypothesis. In A. Newen, L. S. de Bruin & S. Gallagher (Eds.). The Oxford Handbook of 4E Cognition (pp. 129-145). Oxford: Oxford University Press.
https://doi.org/10.1093/oxfordhb/9780198735410.013.7
Hohwy, J. (2020a). New directions in predictive processing. Mind & Language. 2(35), 209-223.
https://doi.org/10.1111/mila.12281
Hohwy, J. (2020b). Self-supervision, normativity and the free energy principle. Synthese, 1-25. First online.
https://doi.org/10.1007/s11229-020-02622-2
Hohwy, J. & Seth, A. K. (2020). Predictive processing as a systematic basis for identifying the neural correlates of consciousness. Philosophy and the Mind Sciences, 1(II).
https://doi.org/10.33735/phimisci.2020.II.64
Howson, C. (1991). The ‘Old Evidence’ Problem. Brit. J. Phil. Sci., 42, 547-555.
https://doi.org/10.1093/bjps/42.4.547
Hutchins, E. (2014). The cultural ecosystem of human cognition. Philos. Psychol. 27, 34-49.
https://doi.org/10.1080/09515089.2013.830548
Hutto, D. D. (2017). Getting into predictive processing’s great guessing game: Bootstrap heaven or hell?. Synthese, 195, 2445-2458.
https://doi.org/10.1007/s11229-017-1385-0
Jasrasaria, D. & Pyzer-Knapp, E. (2018). Dynamic Control of Explore/Exploit Trade-Off In Bayesian Optimization. arXiv:1807.01279v1.
https://doi.org/10.1007/978-3-030-01174-1_1
Jensen F. V. (2006) An Introduction to Bayesian Networks. London: UCL Press.
Jones, M. & Love, B. C. (2011). Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and brain sciences, 34, 169-231.
https://doi.org/10.1017/S0140525X10003134
Kaplan, D. (2012). How to demarcate the boundaries of cognition. Biology and Philosophy, 27(4), 545-570.
https://doi.org/10.1007/s10539-012-9308-4
Kawalec, P. (2003). Zagadnienia metodologiczne w bayesowskiej teorii konfirmacji (Methodological issues in Bayesian confirmation theory). Roczniki filozoficzne, 1(51), 113-142.
Kelso, J. S. (2012). Multistability and metastability: understanding dynamic coordination in the brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 906-918.
https://doi.org/10.1098/rstb.2011.0351
Kiebel, S. & Friston, K. J. (2011). Free energy and dendritic self-organization. Frontiers in Systems Neuroscience, 5(80).
https://doi.org/10.3389/fnsys.2011.00080
Kiefer, A. (2017). Literal Perceptual Inference. In T. Metzinger & W. Wiese (Eds.). Philosophy and Predictive Processing: 17 (pp. 1-19). Frankfurt am Main: MIND Group.
Kiefer, A. & Hohwy, J. (2018). Content and misrepresentation in hierarchical generative models. Synthese, 195, 2387-2415.
https://doi.org/10.1007/s11229-017-1435-7
Kirchhoff, M., Parr, T., Palacios, E., Friston, K. J. & Kiverstein, J. (2018). The Markov blankets of life: autonomy, active inference and the free energy principle. J. R. Soc. Interface 15:20170792.
https://doi.org/10.1098/rsif.2017.0792
Kirchhoff, M. & Robertson, I. (2018). Enactivism and predictive processing: a non-representational view. Philosophical explorations 2(21).
https://doi.org/10.1080/13869795.2018.1477983
Kiverstein, J., Miller, M. & Rietveld, E. (2019). The feeling of grip: novelty, error dynamics, and the predictive brain. Synthese, 196, 2847-2869.
https://doi.org/10.1007/s11229-017-1583-9
Kiverstein, J., Sims, M. (2021). Is free-energy minimisation the mark of the cognitive?. Biol Philos, 36, 25.
https://doi.org/10.1007/s10539-021-09788-0
Klein, C. (2018). What do predictive coders want? Synthese, 195, 2541-2557.
https://doi.org/10.1007/s11229-016-1250-6
Knill, D. C. & Pouget, A. (2004). The Bayesian Brain: The Role of Uncertainty in Neural Coding and Computation. Trends in Neurosciences, 27, 712-719.
https://doi.org/10.1016/j.tins.2004.10.007
Knill, D. C. & Richards, W. (1996). Perception as Bayesian Inference. Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9780511984037
Korbak, T. (2021). Computational enactivism under the free energy principle. Synthese, 198, 2743-2763.
https://doi.org/10.1007/s11229-019-02243-4
Kretzmer, E. R. (1952). Statistics of Television Signals. Bell System Technical Journal, 4(31), 751-763.
https://doi.org/10.1002/j.1538-7305.1952.tb01404.x
Kwisthout, J., Bekkering, H. & van Rooij, I. (2017). To be precise, the details don’t matter: On predictive processing, precision, and level of detail of predictions. Brain and Cognition, 112, 84-91.
https://doi.org/10.1016/j.bandc.2016.02.008
Kwisthout, J. & van Rooij, I. (2019). Computational resource demands of a predictive Bayesian brain. Computational Brain and Behaviour, 3(2), 174-188.
https://doi.org/10.1007/s42113-019-00032-3
Lau, J. & Deutsch, M. (2002). Externalism About Mental Content. In E. N. Zalta (Ed.). Stanford Encyclopedia of Philosophy, URL = <https://plato.stanford.edu/archives/fall2019/entries/content-externalism/>, 1-13. access: 02.08.2019.
Lelito, J. P. & Brown, W. D. (2006). Complicity or Conflict over Sexual Cannibalism? Male Risk Taking in the Praying Mantis Tenodera aridifolia sinensis. The American Naturalist, 2(168), 263-269.
https://doi.org/10.1086/505757
Litwin, P. & Miłkowski, M. (2020). Unification by fiat: arrested development of predictive processing. Cognitive Science, 7(44), 12867.
https://doi.org/10.1111/cogs.12867
MacKay, D. M. (1956). The epistemological problem for automata. In C. E. Shannon & J. McCarthy (Eds.). Automata studies (pp. 235-251). Princeton: Princeton University Press.
https://doi.org/10.1515/9781400882618-012
Marr, D. (1982). Vision: A computational approach. San Francisco: Freeman & Co.
Marvan, T. & Havlík, M. (2020). Is Predictive Processing a Theory of Consciousness? New Ideas in Psychology, 61(8).
https://doi.org/10.1016/j.newideapsych.2020.100837
McGregor, S. (2017). The Bayesian stance: Equations for ‘as-if’ sensorimotor agency. Adaptive Behavior, 2(25), 72-82.
https://doi.org/10.1177/1059712317700501
Milidge, B., Tschantz, A., Seth, A. K. & Buckley, C. L. (2020). Relaxing the Constraints on Predictive Coding Models. arXiv: 2010.01047v2 [q-bio.NC]. 1-17.
Miller Tate, A. J. (2019). A predictive processing theory of motivation. Synthese, 1-29. https://doi.org/10.1007/s11229-019-02354-y
Miłkowski, M. (2016a). Integrating cognitive (neuro)science using mechanisms. Avant, VI(2), 45-67. https://doi.org/10.26913/70202016.0112.0003
Miłkowski, M. (2016b). Unification Strategies in Cognitive Science. Studies in Logic, Grammar and Rhetoric, 48(1), 13-33.
https://doi.org/10.1515/slgr-2016-0053
Mitchel, S. (2003). Biological Complexity and Integrative Pluralism, Cambridge: Cambridge University Press.
Mumford, D. (1992). On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biological Cybernetics, 66 (3), 241-251.
https://doi.org/10.1007/BF00198477
Nair V., Susskind J. & Hinton G. E. (2008). Analysis-by-Synthesis by Learning to Invert Generative Black Boxes. In V. Kůrková, R. Neruda & J. Koutník (Eds.). Artificial Neural Networks – ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163 (pp. 971-981). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-540-87536-9_99
Nave, K. (2021). Visual experience in the predictive brain is univocal, but indeterminate. Phenom Cogn Sci. 1-25. First online.
https://doi.org/10.1007/s11097-021-09747-w
Neisser, U. (1967). Cognitive Psychology. Englewood Cliffs, NJ: Prentice Hall.
Ng, Y. N. & Jordan, M. I. (2001). On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes. In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic (pp. 841-848).
Morville, T., Friston, K., Burdakov, D., Siebner, H. R. & Hulme, O. J. (2018). The homeostatic logic of reward (1-43). bioRxiv, 242974.
https://doi.org/10.1101/242974
Laudan, L. (1977). Progress and Its Problems: Towards a Theory of Scientific Growth. Berkeley: University of California Press.
Oaksford, M. & Chater, N. (2007). Bayesian rationality: The probabilistic approach to human reasoning. Oxford: Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780198524496.001.0001
O’Brien, G. & Opie, J. (2004). Notes towards a structuralist theory of mental representation. In H. Clapin, P. Staines & P. Slezak (Eds.). Representation in mind: new approaches to mental representation, (pp. 1-20). Amsterdam: Elsevier.
https://doi.org/10.1016/B978-008044394-2/50004-X
Oliver, B. (1952). Efficient coding. Bell System Technical Journal, 31(4), 724-750.
https://doi.org/10.1002/j.1538-7305.1952.tb01403.x
Orlandi, N. (2016). Bayesian perception is ecological perception. Philosophical Topics, 44(2), 327-351.
https://doi.org/10.5840/philtopics201644226
Orlandi, N. (2018). Predictive perceptual systems. Synthese, 195, 2367-2386.
https://doi.org/10.1007/s11229-017-1373-4
Orlandi, N. & Lee, G. (2018). How Radical is Predictive Processing? In M. Colombo, E. Irvine & M. Stapleton (Eds.). Andy Clark & Critics (pp. 206-221). Oxford: Oxford University Press.
https://doi.org/10.1093/oso/9780190662813.003.0016
Park, H.-J. & Friston, K. J. (2013). Structural and Functional Brain Networks: From Connections to Cognition. Science, 342, 579-589.
https://doi.org/10.1126/science.1238411
Parpart, P., Jones, M. & Love, B. C. (2018). Heuristics as Bayesian inference under extreme priors. Cognitive Psychology, 102, 127-144.
https://doi.org/10.1016/j.cogpsych.2017.11.006
Parr, T. & Friston, K. J. (2018). The Anatomy of Inference: Generative Models and Brain Structure. Front. Comput. Neurosci. 12:90.
https://doi.org/10.3389/fncom.2018.00090
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Francisco: Morgan Kaufmann Publishers.
https://doi.org/10.1016/B978-0-08-051489-5.50008-4
Pezzulo, G., Rigoli, F. & Friston, K. J. (2015). Active inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134, 17-35.
https://doi.org/10.1016/j.pneurobio.2015.09.001
Pfeifer, R. & Bongard, J. (2006). How the Body Shapes the Way We Think: A New View of Intelligence. Cambridge, MA: MIT Press.
https://doi.org/10.7551/mitpress/3585.001.0001
Pickering, M. J. & Clark, A. (2014). Getting ahead: forward models and their place in cognitive architecture. Trends in Cognitive Science, 8(9), 451-456.
https://doi.org/10.1016/j.tics.2014.05.006
Piekarski, M. (2019). Normativity of Predictions: A New Research Perspective. Front. Psychol. 10:1710.
https://doi.org/10.3389/fpsyg.2019.01710
Povich, M. (2019). Model-based cognitive neuroscience: Multifield mechanistic integration in practice. Theory & Psychology, 29(5), 640-656.
https://doi.org/10.1177/0959354319863880
Ramstead, M. J. D., Badcock, P. B. & Friston, K. J. (2017). Answering Schrödinger’s question: A free-energy formulation. Physics of Life Reviews, 24, 1-16.
https://doi.org/10.1016/j.plrev.2017.09.001
Ramstead, M. J. D., Kirchhoff, M., Constant, A. & Friston, K. J. (2021). Multiscale integration: beyond internalism and externalism. Synthese, 198, 41-70.
https://doi.org/10.1007/s11229-019-02115-x
Ramstead, M. J. D., Kirchhoff, M. D. & Friston, K. J. (2020). A tale of two densities: Active inference is enactive inference. Adaptive Behavior, 28(4), 225-239.
https://doi.org/10.1177/1059712319862774
Rao, R. P. & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra- classical receptive-field effects. Nat Neurosci, 2 (1), 79-87.
https://doi.org/10.1038/4580
Rescorla, M. (2015). Bayesian perceptual psychology. In M. Matthen (Ed.). The Oxford handbook of philosophy of perception (pp. 694-716). Oxford: Oxford University Press.
Sanborn, A. M. (2017). Types of approximation for probabilistic cognition: Sampling and variational. Brain and Cognition, 112, 98-101.
https://doi.org/10.1016/j.bandc.2015.06.008
Schlicht, T. & Dołęga, K. (2021). You can’t always get what you want: Predictive processing and consciousness. Philosophy and the Mind Sciences, 2.
https://doi.org/10.33735/phimisci.2021.80
Schwartenbeck, P., FitzGerald, T., Dolan, R. J. & Friston, K. (2013). Exploration, novelty, surprise, and free energy minimization. Frontiers in Psychology, 4(710), 1-5.
https://doi.org/10.3389/fpsyg.2013.00710
Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends Cogn Sci. 17(11), 565-73.
https://doi.org/10.1016/j.tics.2013.09.007
Seth, A. K. (2015). Inference to the best prediction. In T. Metzinger & J. M. Windt (Eds.). Open MIND, 35R (pp. 1-8). Frankfurt am Main: MIND Group.
Seth, A. K. & Friston, K. J. (2016). Active interoceptive inference and the emotional brain. Philosophical Transactions Of The Royal Society B: Biological Sciences, 371(1708), 20160007.
https://doi.org/10.1098/rstb.2016.0007
Shea, N. (2014) Exploitable isomorphism and structural representation. Proc Aristot Soc CXIV, 77-92.
https://doi.org/10.1111/j.1467-9264.2014.00367.x
Shi, Y. Q. & Sun, H. (1999). Image and video compression for multimedia engineering: Fundamentals, algorithms, and standards. Boca Raton, FL: CRC Press.
https://doi.org/10.1201/9781420049794
Sims, A. (2016). A problem of scope for the free energy principle as a theory of cognition. Philosophical Psychology, 29, 967-980.
https://doi.org/10.1080/09515089.2016.1200024
Sims, A. (2017). The problems with prediction – the dark room problem and the scope dispute. In: T. Metzinger & W. Wiese (Eds.). Philosophy and Predictive Processing: 2 (pp.1-18). Frankfurt am Main: MIND Group.
Smith, R., Friston, K. J. & Whyte, C. (2021). A Step-by-step Tutorial on Active Inference and Its Application to Empirical Data. PsyArXiv. January 2.
https://doi.org/10.31234/osf.io/b4jm6
Spratling, M. W. (2012). Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Comput. 24(1), 60-103.
https://doi.org/10.1162/NECO_a_00222
Spratling, M. W. (2017). A review of predictive coding algorithms. Brain and Cognition, 112, 92-97.
https://doi.org/10.1016/j.bandc.2015.11.003
Srinivasan, M. V., Laughlin, S. B. & Dubs, A. (1982) Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci. 216(1205), 427-59.
https://doi.org/10.1098/rspb.1982.0085
Stanford, P. K. (2019). Unconceived Alternatives and Conservatism in Science: The Impact of Professionalization, Peer-review, and Big Science., Synthese, 196, 3915-3932.
https://doi.org/10.1007/s11229-015-0856-4
Sterling, P. & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In S. Fisher & J. Reason (Eds.). Handbook of life stress, cognition, and health (pp. 629-649). Chichester: John Wiley & Sons.
Thornton, C. (2016). Predictive processing is Turing complete: A new view of computation in the brain. Preprint.
Tversky, A. & Kahneman. D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 4157(185), 1124-1131.
https://doi.org/10.1126/science.185.4157.1124
Tversky, A. & Kahneman. D. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 2(47), 263-291.
https://doi.org/10.2307/1914185
van Es, T. (2020a). Minimizing prediction errors in predictive processing: from inconsistency to non-representationalism. Phenom Cogn Sci, 19, 997-1017.
https://doi.org/10.1007/s11097-019-09649-y
van Es, T. (2020b). Living models or life modelled? On the use of models in the free energy principle. Adaptive Behavior, 3(29), 315-329.
https://doi.org/10.1177/1059712320918678
van Rooij, I., Wright, C. D., Kwisthout, J. & Wareham, T. (2018). Rational analysis, intractability, and the prospects of ‘as if’-explanations. Synthese, 195, 491-510.
https://doi.org/10.1007/s11229-014-0532-0
Varela, F., Maturana, H. & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Biosystems, 5 (4), 187-196.
https://doi.org/10.1016/0303-2647(74)90031-8
Varela, F., Thompson, E. & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge, MA, London, UK: The MIT Press.
https://doi.org/10.7551/mitpress/6730.001.0001
Veissière, S., Constant, A., Ramstead, M. J. D., Firston, K. J. & Kirmayer, L. J. (2020). Thinking through other minds: A variational approach to cognition and culture. Behavioral and Brain Sciences, 43, e90.
https://doi.org/10.1017/S0140525X19001213
Wachowski, W. M. (2018). Commentary: Distributed Cognition and Distributed Morality: Agency, Artifacts and Systems. Frontiers in Psychology, 9, 490.
https://doi.org/10.3389/fpsyg.2018.00490
Wald, A. (1947). An Essentially Complete Class of Admissible Decision Functions. The Annals of Mathematical Statistics, 549-555.
https://doi.org/10.1214/aoms/1177730345
Wiese, W. (2015). Perceptual Presence in the Kuhnian-Popperian Bayesian Brain – A Commentary on Anil K. Seth. In T. Metzinger & J. M. Windt (Eds). Open MIND: 35(C) (pp. 1-19). Frankfurt am Main: MIND Group.
Wiese, W. (2017). What are the contents of representations in predictive processing? Phenomenology and the Cognitive Sciences, 16, 715-736.
https://doi.org/10.1007/s11097-016-9472-0
Wiese, W. & Metzinger, T. (2017). Vanilla PP for Philosophers: A Primer on Predictive Processing. In T. Metzinger & W. Wiese (Eds.). Philosophy and Predictive Processing: 1 (pp. 1-18). Frankfurt am Main: MIND Group.
https://doi.org/10.7551/mitpress/9780262036993.003.0008
Wilkinson, S. (2014). Accounting for the phenomenology and varieties of auditory verbal hallucination within a predictive processing framework. Consciousness and Cognition, 30, 142-155.
https://doi.org/10.1016/j.concog.2014.09.002
Williams, D. (2019a). Hierarchical minds and the perception/cognition distinction. Inquiry. 1-24.
https://doi.org/10.1080/0020174X.2019.1610045
Williams, D. (2019b). Epistemic Irrationality in the Bayesian Brain. The British Journal for the Philosophy of Science, 1-45, axz044.
Williams, D. (2020). Predictive coding and thought. Synthese, 197, 1749-1775.
https://doi.org/10.1007/s11229-018-1768-x
Zahavi, D. (2018). Brain, Mind, World: Predictive Coding, Neo-Kantianism, and Transcendental Idealism. Husserl Studies, 34, 47-61.
https://doi.org/10.1007/s10743-017-9218-z

Comments are closed.