From Computational Aesthetic Prediction for Images to Films and Online Videos
Abstract
Keywords
Full Text:
PDFReferences
Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., & Vijayanarasimhan, S. (2016, September 27). YouTube-8M: A Large-Scale Video Classification Benchmark. Retrieved from https://arxiv.org/abs/1609.08675
Clark, C. (2014). The colors of motion. Retrieved from http://thecolorsofmotion.com/films
Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2006). Studying aesthetics in photographic images using a computational approach. In A. Leonardis, H. Bischof, A. Pinz (Eds.) Computer Vision – ECCV
(pp. 288–301). Berlin, Germany: Springer-Verlag. doi:10.1007/11744078_23
Lemarchand, F. (2017). Fundamental visual features for aesthetic classification of photographs across datasets. Manuscript submitted for publication.
Lu, X., Lin, Z., Jin, H., Yang, J., & Wang, J. Z. (2014). RAPID: Rating pictorial aesthetics using deep learning. In Proceedings of the ACM International Conference on Multimedia - MM ’14 (pp. 457–466). doi:10.1145/2647868.2654927
Marchesotti, L., Perronnin, F., Larlus, D., & Csurka, G. (2011). Assessing the aesthetic quality of photographs using generic image descriptors. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1784–1791). doi:10.1109/ICCV.2011.6126444
Murray, N., Marchesotti, L., & Perronnin, F. (2012). AVA: A large-scale database for aesthetic visual analysis. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 2408–2415).
Niu, Y., & Liu, F. (2012). What makes a professional video? A computational aesthetics approach. IEEE Transactions on Circuits and Systems for Video Technology, 22(7), 1037–1049. doi:10.1109/TCSVT.2012.2189689
Romero, J., Machado, P., Carballal, A., & Santos, A. (2012). Using complexity estimates in aesthetic image classification. Journal of Mathematics and the Arts, 6(2–3), 125–136. doi:10.1080/17513472.2012.679514
Shulman, J. (2017). Photographs of films. Retrieved from http://www.jasonshulmanstudio.com/photographs-of-films/
Tang, X., Luo, W., & Wang, X. (2013). Content-Based Photo Quality Assessment. IEEE Transactions on Multimedia, 15(8), 1930–1943. doi:10.1109/TMM.2013.2269899
Tzelepis, C., Mavridaki, E., Mezaris, V., & Patras, I. (2016). Video aesthetic quality assessment using kernel Support Vector Machine with isotropic Gaussian sample uncertainty (KSVM-IGSU). In 2016 IEEE International Conference on Image Processing: Procedeeings
(pp. 2410–2414). doi:10.1109/ICIP.2016.7532791
Yang, C.-Y., Yeh, H.-H., & Chen, C.-S. (2011). Video aesthetic quality assessment by combining semantically independent and dependent features. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing: Proceedings (pp. 1165–1168). doi:10.1109/ICASSP.2011.5946616
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 François Lemarchand